
AD-AI05 203 KANSAS STATE UiNV MANHATTAN DEPT OF COMPUTER SCZENCE F/G 9/2COMNAND PROCESSORS FOR OYNANIC CONTROL OF SOFTWARE CONF!SURATIO--ETC(U,JUL 80 R FUNDOS, V WALLENTINE OAAG29-?8--0200

UNCLASSIFIED TR-40-02
NL

"IIIIII""

,LEVEL - WW.
0cvt

-COMMAND .ROCESSORS FOR WXNAMIC .ONTRCL
OF"$OFTWtRE CONFIdURATIONS,

dDTICV Roxanna kundis

~SELECTEDVirgil,'Wallentine E E T 7
"- !OCT 0 6 1981j ...

i Techricalepgrt .
("fi LTR-80 021

Depart-ent of Computer Science
Kansas State University

Manhattan, Kansas

JuydOW

8This research was supported in part by the Army Institute for Research
in Management, information, and Computer Systems under &rant number
DAAG@29-78-G-O200/from the Army Research Office.

This document has bem proe
for public release aid &czl.;jM,~(lilb.lo,! a uanm,,ed. J.

81 1022121
-2"

ABSTRACT

Command language facilities for the constructicn and execution of

software corfigurations--networks of communicating processes--are very

limited today because current operating systems do not support this

level of complexity. The Network Adaptable Executive (NADEX) is an

operating system which was designed to support dynamic

configurations--those configurations which are constructed at command

interpretation time--of cooperating processes. These dynamic

configurations include arbitrary graphs which may contain cycles. Three

command processors have been developed to demonstrate the sufficiency of

the NADEX facilities to support dynamic configurations.

NADEX facilities, an overview of the Job Control System, and the

command processor configuration environment are presented, followed by

user's guides for the command processors. Each command processor has

different responsibilities and capabilities for handling configurations:

The NADEX Static command processor executes completely connected

configurations. The UNIX command processor allows linear configurations

to be constructed dynamically, and the MIRACLE command processor allows

the dynamic construction of arbi.trary configurations. Syntax graphs and

sample user sessions are presented for each command processor./I

[NTIS GRA&I -1;
DTIC TAB
U Unannounced d .

By
Distribution/_

Availability Codes

Avail and/orDist Special

Oftwomunam

I

TABLE)F CCNTENTS F,

ILLUSTRATIONS .

INTRODUCTION . 1

Chapter

I. NADEX FACILITIES 3

I. THE DO COWAD PROCESSOR 12

III. THE STATIC COMMAND PROCESSOR 15

IV. THE UNIX CO4',AND PROCESSOR 21

V. THE MIRACLE COMMAND PROCESSOR 32

VI. SUMMARY AND CONCLUSIONS 43

Appendix

A. SYNTAX GRAPHS 50

B. NADEX NATIVE PREFIX 61

C. SAMPLE USER SESSIONS 63

REFERENCES". 72

%I

ii.i

ILLUSTRATIONS

1. PCD1

2. PCD2 5

3. PCDHIER 5

4. PCDSAH. 6

5. PCD3 6

6. Resulting Configuration of PCD2 ! PCD3 6

7. Command Processor Configuration 10

8. SOLO Configuration13

9. Execution of EDIT(CARDS,TAPE) 13

10. Examples of 0S/32 MT File Descriptors16

11. NADEX Static Fast Commands 17

12. NADEX Static Commands with Parameters20

13. UNIX Commands and Resulting Configurations22

14. UNIX Commands using Sequencing Operators 24

15. Examples of UNIX Fast Commands 26

16. Hierarchical Nodes in CMD.RES 29

17. Resolved PCD Files written out by Command Processor30

18. Completed Command Configuration 31

19. Comparison between UNIX and MIRACLE Commands 34

20. Simulation Configuration35

21. Dining Philosophers 36

22. Examples of MIRACLE Fast Commands 38

23. Comparison of Command Processors 46

iii
4

INTRODUCTION

Command language facilities for the construction and execution of

software configurations--networks of communicating processes--are very

limited today because current operating systems do not support this

level of complexity. The Network Adaptable Executive (NADEX)[11] is an

operating system which was designed to support dynamic

configurations--those configurations which are constructed at command

interpretation time--of cooperating processes. These dynamic

configurations may be composed of arbitrary graphs which can contain

cycles. Three command processors have been developed to explore the

sufficiency of the NADEX facilities to support dynamic configurations.

Users' guides to these command processors will be presented in this

document, together with syntax graphs and sample user sessions.

A command allows the user to query the state of a program and/or

the computer and to manipulate its resources. For example, file

maintenance may be achieved through a command such as

DELETE MYFILE

which deletes a file named MYFILE from the file system; or programs may

be executed with a command like

PAS32 MYFILE

which compiles the Pascal program named MYFILE. The program which reads

and interprets these commands as requests to execute operations or other

programs is commonly known as a 2amm= 2rs =, comman i,,

or sAl.

_____ _____ _____

i-

2

In chapter I, NADEX facilities, an overview of the Job Ccntrol

System, and the- command processor configuration are presented. Much% (f

the basic structure of the NADEX command processors is taken from a

command processor called DO which was written by Per Brinch Hansen[3].

This command processor originally ran under the Solo[3] operating system

and the parts of it that prove relevant to further command processor

development are described in chapter II. Although the Solo operating

system does run under NADEX, it is not used for practical purposes.

Chapter III contains a description of the NADEX version of DO.

Since the UNIX shell[2] seems to be the only commercially

available command processor that allows the user to dynamically

configure commands, a small subset of the UNIX command processor was

implementd to test the sufficiency of and demonstrate the use of NADEX

facilities. This subset of UNIX is documented in chapter IV. In

chapter V, the NADEX implementation of Gray's MIRACLE[5] (Machine

Independent Resource Allocation and Control Language) is described.

This network command language supports named ports which allows

arbitrary configurations to be constructed. Implementation features and

conclusions are found in chapter VI. Syntax graphs for the command

languages, the NADEX Native Prefix, and sample user sessions are listed

in the appendices.

'UNIX is a trademark of Bell Laboratories

PTi

CHAPTER I

NADEX FACILITIES

NADEX[11] is a message-based, multi-user, network operating system

which was developed in Concurrent Pascal. Most current operating

systems support a fixed number of processes cooperating on the execution

of a single user task. However, NADEX was specifically designed to

support dynamic configurations with a variable number of user

processes.

Since this seems to be a rather unpublished field of

research[7, 8], there are few guidelines concerning the usefulness of

dynamic configurations or how best to utilize them. Several different

types of command processors were developed to run under NADEX to

research the practicality of dynamic user configurations and the

sufficiency of the NADEX Core OS to support them.

The VADEX Core OS[11] provides facilities for realizing

configurations. At this level, a configuration consists of processes

and explicit communication between these processes. Each process may

execute a user program or a system routine. A " Tran.Imission Stream

(DTS) allows processes to communicate.

All NADEX command processors use the ,ADEX Native Prefix as an

interface to the Core OS for access to these facilities. The prefix

routines that the command processors use are READCHAR, WRIT_.CHAR,

READ..DATA, UIRITFL.DATA, READPARM, and WRITEFARM which read and write

characters, data blocks (512 bytes), and parameter blocks (32 bytes)

3I

4

respectively. When a complete Confiauration D (CD) [1C] has

been created, it is submitted to the Core OS for execution by calling

the SUBMITCONFIG prefix entry. The NADEX Native Prefix is listed 'n

Appendix B.

The Job Control System provides the user interface to the NADEX

operating system. It allows the user to operate in a relatively simple

environment and to construct configurations in a modular manner. A

brief summary of the Job Control System is presented here; more cetail

may be found in C10].

A user may view a software configuration as being made up of

c. Each component may consist of combinations of other

components, or subcomgonen-t. A node, which is implemented by a process

in the Core OS, is the most primitive component and may perform one of

two functions. It may provide access to system resources such as files,

devices, or subsystems; or it may execute a user program writtet. in

Sequential or Concurrent Pascal. Bi-directional communication between

components is achieved by naming the ports [I] of each node that are to

be connected and then f"READ"ing and "WIRITE"ing on these buffered ports.

This connection is realized by a DTS.

Each component of a configuration may be described by a Pascal 9

record which is termed a NADEX Configuration Descritor or

PCD[9, 10]. A PCD thus abstracts and encapsulates one or more nodes of

a configuration. Each configuration may be composed of one or more

PCDs. The information that defines the nodes, ports, and parameters of

a particular PCD record is contained in a PCD file. Graphical examples

of PCDs are shown in Figures 1 through 6.

5

p1

P3

NME1 P1 P1 ~NODEZ P 1 CE

Figure 1. PCD1

INODE7

NCDE5 P1 p1 NODE6 p2 out

Figure 2. PCD2

PM2 out pi NOWE8

Figure 3.PCHIER

6

NODE7

NME5 P1 PI NODE6 p OE

Figure J4. PCDSME

Figure 5. PCD3

'I

PMD2 out in PCD3

Figure 6. Resulting configuration of PCD2 I PCD3

7

PCD1 in Figure 1 is a configuration that contains four nodes. All

ports (NODE1.P1, INODE2.PI, etc.) are connected within the PCD so they

are interna ports. PCD2 (Figure 2) is a partial configuration which

contains three nodes. All are connected internally except NODE6.P2,

which is an external port. Its external name is OUT and may be connected

to another port either at command time or within a hierarchical PCD as

shown in Figure 3.

PCDHIER (Figure 3) is a hierarchical PCD because it contains a

component, PCD2, which is itself a PCD. At this level, NODE5, NODE6,

and NODE7 are not visible, although PCDHIER will function exactly as

PCDSAME in Figure 4 in which only primitive nodes appear.

PCDs may be nested several levels deep; PCDHIER could also become

a component of another PCD. The ability to create hierarchial PCDs

using the naz~es of "lower level" PCDs eliminates unnecessary duplication

where a subcomponent is used more than once. It allows the user to hice

certain details (abstraction) and aids in functional decomposition.

When dynamic configuring of nodes is allowed, external ports may

be connected at command time. If, for example, a PCD existed such as

PCD3 in Figure 5, PCD2 and PCD3 could be connected at command time with

a UNIX pipe operator. The command

PCD2 ! PCD3

connects the two external ports and creates the configuration shown in

Figure 6. The output from PCD2 becomes the input to PCD3, which in

effect connects NODE6.P2 to NODE9.P.

Besides information about nodes and their port connections, ?CDs

may also contain templates for parameters which are supplied by the user

at command time. A PCD may have parameters of type integer, identifier,

S

string, boolean, or file descriptor. In additicn, parameter_ may b

designated as being mandatory or optional. A default value mu: tc,*

specified for optional pa'rameters.

Only user commands which descri:e completely re3:lve

configurations--thiose containing no unresolved ports or parameters--may

be executed. PCD1, PCDHIER, and PCDSAME each represent a complete

configuration because all ports are connected or resolved and there are

no parameters. PCD2 has an external port which is unresolved and

therefore represents only a partial configuration.

In order to build a complete configuration, the user must be aware

of external ports and parameters. If the PGD has external ports or

mandatory parameters that are omitted by the user, a prompt message will

be displayed listing the missing information. For example, if the user

types the command GREP--a UNIX program that lists lines from an input

file that contain a specified string--the following message will be

displayed on the user's console:

MANDATORY PARAMETER OMITTED

TRY AGAIN:
GREP SOUGHT: STRING

EXTERNAL PORTS: IN, OUT

This Lessage tells the user that GREP expects a string parameter named

SOUGHT and that there are two external ports.

Similarly, if external ports are not connected properly, the

message

ERROR IN PORT CONNECTIONS

is displayed, followed by the external port names. Port modes (READ,

WRITE, READ-WRITE) and protocols (ASCII, SEQUENTIAL, or RANDOM) must be

I

9

compatible. If for instance, a user tries to connect a READ port to

another READ port, the command processor will signa, an error, but coes

not currently icentify the ports in error. The port mode READ-WPITE

currently implemented as being compatible with either READ, WRITE, or

READ-WRITE. ASCII and SEQUENTIAL protocols are compatiole wish each

other. The RANDOM protocol is compatible only with itself. At the

present time, the main problem with port connections seems to be one of

omission. If the user had problems with port mode or protocol

compatibilities, the error message could easily be altered to include

the mode and/or protocol as well as each external port name (similar to

the type information that is included with parameters).

Command Proessor Confiurati n ndent i /

Figure 7 presents an abstract user view of the command processor

configuration which runs under NADEX. Each command processor has

different responsibilities and capabilities for handling

configurations. The NADEX Static command processor will only accept

completely connected PCDs. Dynamic connection of ports at command time

is not permitted. Its syntax includes both keyword and positional

parameters. ;ith the UNIX command processor, unresolved PCDs may be

connected to form linear configurations. The MIRACLE command processor

allows unresolved PCDs to be connected to create arbitrary graphs. The

UNIX and MIRACLE languages that are currently implemented are not

necessarily proper subsets of the original command languages; references

within this paper to UNIX and MIRACLE refer to the implementions under

NADEX.

-uI

10

Figure 7. Comnd procesaor confriguration.

, p

11

Although each command processor handles a different set ,f

commands, the execution enviroments are all similar. In general, the

command processor parses a command read from the user's console. The

existence of PCD and input files is verified, parameters are resolved,

output files are created if necessary, and if supported, unresolved

ports are connected. This information is stored in "resolved" PCD

files. A new PCD is created by the command processor containing the

names and connections between the resolved PCDs in the command. Its

name is zent as a parameter to the sequential Pascal program LINK[1O].

LINK is responsible for looking up all the lower level PCDs,

assigning DTSs, assuring resource availability, eliminating user

information that is not needed, and doing whatever else is necessary to

map the PCD into a CD[1O]. LINK then submits the CD to the HADEX Core

OS for execution in one of two ways. The first involves a . which

causes the command processor configuration to be replaced by the new

user configuration. When the user configuration has terminated, the

command processor configuration is restored to accept further commands.

The second way involves a %= 2off, where the new configuration executes

concurrently with the command proces)r configuration (providing that

resources are available).

Commands that involve text substitution or operations such as

allocating, deleting, or listing a file do not require communication

with the LINK program and the submission of a new configuration to the

operating system; they are handled by the command processor itself by

sending messages to the file subsystem.

CHAPTER II

THE DO COMMAND PROCESSOR

The Solo operating system was written by Per Brinch Hansen and

only runs a configuration which has an input process, job process, and

output process as in Figure 8. The input and output processes may

access devices or files by running sequential programs. The job process

may only load and execute sequential programs.

The job process initially calls the sequential program DO, which

is the command processor. DO reads the user command from the console

and parses it. The first part of the command must be an identifier

which references an executable program name. A lookup operation is

performed on this identifier. If found, and the command contains

parameters enclcsed in parentheses, the parameters are placed in an

argument list. As long as the parameters are either identifiers,

integers, or boolean values, no type checking of parameters is done at

this time. The number and type of parameters must be checked by each

program as it is invoked.

If no errors are detected, the RUN prefix entry is called to load

the program referenced within the command. The entire arglist is passed

as a parameter. For example, if the command EDIT(CARDS, TAPE) were

typed in and if an EDIT program existed, it would be called with a

parameter list containing the identifiers 'cards' and 'tape'. It would

then be executed within the job process.

Since every program is responsible for checking its own

12

o,___ _,___ ___ __ ___ __ __-__

13

PROCES PROCESS PROCES

Figure 8. SOLO configuration.

Input Process Job Process Output Process

DO

I0 IO
ar ar

data EDIT data

CARDS TAPE

Figure 9. Execution of EDIT(CARS,TAPE).

I4

m lm l I I

14

parameters, the EDIT program must parje the tw:o parameters and insure

that both source and destination filename parameters are names of

existing 2iles. If the output file is not found, a new one is created.

Since it is the user program that is responsible for configuring nodes,

it must tell the input and output processes which programs to run. :he

EDIT program therefore sends a message containing the first parameter to

the 1O program executing in the input process. This tells the input

process that it is to run the CARDS program. The second parameter is

sent to the output process. The output process therefore runs the TAPE

program. A diagram illustrating this scenario is shown by Figure 9.

Under SOLO, all configurations are static. The basic shape of the

configuration as illustrated by Figure 8 may never vary. The programs

that run in those three processes are determined by the name of the user

program and its parameters specified in the command.

I'

CHAPTER III

THE NADEX STATIC COMMAND PROCESSOR

The NADEX Static command processor is similar to DO as it only

executes static commands. However, while a DO command consists of a

sequential program name with its arguments, a similar NADEX Static

command processor command consists of the name of a PCD file followed by

its arguments. Both the program name listed in the DO command and the

PCD file contain information that describe the configuration to be

executed. Like DO, the Static command processor does not allow dynamic

connections with other nodes at command time. Although the PCDs that

are accepted by the Static command processor may contain multiple nodes

connected in an arbitrary graph, the connections must be fully resolved

within the PCD. All connections must be defined prior to command time.

Unlike DO, this command processor will accept two types of

commands. The first type allows "fast" commands to be executed directly

while the second type causes configurations to be built and activated.

The typical command is of the form

command(argl,arg2,...,argN)

where "command" is the name of a PCD file describing the configuration

to be run or the name of a fast command. The arguments "argi" through

"argn" may be integers, strings, identifiers, booleans, or file

descriptors with the following restrictions: Integers must be equal to

or smaller than 99999999. Strings must be enclosed in single

apostrophes with a length less than or equal to 32 characters. A single

15

zz -__ _ _

16

apostrophe may be used within a string by repeating the symbol.

Identifiers must, be no longer than eight characters. Only the toolean

values TRUE and FALSE may be used. Figure 10 illustrates examples of

OS/32 MT file descriptors.

(a) SYS2:A.PAS/G
(b) B/P
(c) C.OBJ
(d) D.PAS/S
(e) E
(f) USR6:F.CSS

Figure 10. Examples of OS/32 MT file descriptors.

Figure 10a is interpreted as: Volume SYS2:, file name A, extension

.PAS, on the user's group account. 10b names the file B (with a blank

extension) on tLe user's private account. The volume is assumed to be

the user's current volume. Figures 10c through 10f may be interpreted

similarly. An account of S indicates the system account; if this field

is omitted, the default value is P for private.

Fast Commands

The six fast commands (HELi, ALLOCATE, DELETE, RENAME, ATTF, LIST,

and SIGNOFF) do not start up new configurations. The function and

expected arguments of each of the fast commands will be discussed and

examples provided.

The HELP command accepts no arguments. It displays a list of the

fast commands, their arguments, and functions at the user's console.

Also displayed is a list of executable configuration names and their

functions.

ALLOCATE is used to create a new file. It requires one parameter,

the name of a new OS/32 MT file descriptor. If the specified file

i 7 7

17

already exists, an error message will be displayed.

DELETE also requires a parameter consisting of OS/32 MiT file

descriptor. If the designated file does not exist, an error message is

displayed.

The RENAME command requires two file names separated by commas:

the first one must be the name of an existing file and the second must

be a the name of a new file. If the first name does not exist or the

second one does exist, an error will occur and no names will be

changed.

The fast command ATTR requires a file descriptor parameter. It

returns the attributes of the specified file, including the fully

qualified name, the number of records, and length.

The entire contents of a file may be displayed at the console by

typing LIST and a file descriptor. If the file does not exist, an error

will occur.

To terminate a user session, the fast ommand SIGNOFF is used.

Examples of fast commands are provided in Figure 11.

HELP
ALLOCATE 1EW. PAS
ALLOCATE SYS2:TEST. PAS/P
DELETE NEW. OBJ
DELETE USR6 :FILE3.TXT
RENAME FIRST. PAS, SECOND. PAS
RENAME SYS2:WOW. OBJ,WOWOWOW. OBJ
ATTR SYS2 :WHAT. PAS

ATTR HOW. OBJ/P
LIST TELL.TXT
LIST LISTS.TXT
SIGNOFF

Figure 11. NADEX Static fast commands.

I

18

Configuration-Building Commands

If the command is not a fast command, the first item in the

command line must be the name of a PCD file. This PCD file is read by

the command processor to determine what mandatory and optional argunents

are expected. The arguments typed in are parsed, and if they are

compatible with the templates, they are filled into the PCD and sent to

LINK for execution as explained in chapter I.

Only one command per line is accepted. An optional semicolon may

follow the command. Blanks may be used anywhere except within an

identifier or a number. Parentheses surrounding the argument list are

optional. Arguments must be separated by commas. A NFeLINE character

may directly follow a comma in an argument list. Association between

actual parameters (those typed in by the user at command time) and

formal parameters (the templates specified in the PCD) may be made

either positionally or by explicit naming. To illustrate the discussion

of parameters, a PCD named PA191',X has been defined as:

PARMEX [PARMI STRING DEFAULT('NS')],
[PARM2 : FD DEFAULT(SYS2:IN.TXT/P)],
PARM3 FD,

CPARM4 IUTEGER DEFAULT(48)]

PARMEX may use 4 parameters, 3 of which are optional. The first

parameter which is optional and named PARMI, is a string type and has a

default value of 'NS' if it is not specified at command time. The next

two parameters are file descriptors. PARM2 is an optional parameter

with a default value of SYS2:IN.TXT/P. PARM3 is a mandatory parameter;

failure to specify a value at command time constitutes an error. The

last parameter, PARM4, is an optional integer with a default value of

48. Figure 12 lists possible commands involving PARMEX.

If specified positionally, the order of the actual parameters must

19

correspond to that of the formal parameters. Optional arguments that

are omitted must, be indicated by commas. Figure 12a indicates that the

first and second parameters are omitted and that the value of the third

parameter is OUT.TXT. Optional parameters omitted at the end of a

parameter list do not need to be indicated with commas, so the last

comma is acceptable but not necessary. Figure 12b will therefore have

exactly the same effect as the previous command. When named parameters

are used, commas do not need to be used to indicate positions of

parameters which have been omitted. Figure 12c is also equivalent to

the previous two commands.

Named keywords may be specified in any order as illustrated by

Figure 12d. The same values listed positionally are given by 12e. A

combination of positional and named parameters may be used, but it

should be noted that the use of a named parameter will reset the

positional pointer. Notice that in Figure 12f, the integer 55 is in the

third position but it becomes the value for the fourth parameter because

it immediately follows a named occurrence of the third parameter. In

Figure 12g, the attempt to place the value EXTRA in a fifth parameter

will result in an error because PARHX only has four parameters.

Parameter values specified at command time may be overridden with

the use of keywords as in Figure 12f where PARMI first gets a value of

'DOG', and later receives the value 'COW' with the use of the keyword

parameter. Although this is legal, it is not good programming and a

warning message will be issued by the command processor.

20

(a) P.-131EX (OUT. TXT,)
(b) P ARM ,OUT. TXT
(c) PA 'M #'"X (PARM3 = UT.TXT);

(d) PARMEX (PARM4312,ARM2=PED.TXT,PARM1='SS',PARM3TEST.P 's);
(e) PRVEX ('SS', RED.TXT, TEST.PAS, 31g2)

C(f) PARMEX ('D0G',PABM3=0UT.TXT,55,PARM1='COW')

(g) P-RMEX PAR4=4999, EXTRA

Figure 12. NADEX Static commands with parameters.

CHAPTER IV

THE UNIX COMMAND PROCESSOR

IM JUNX Command Lanag&g

The UNIX command processor developed to run under the NADEX OS

implements linear connections between PCDs using a UNIX style syntax.

As with the Static command processor, it will accept either "fast"

commands or configuration-building commands. A basic UNIX

configuration-building command consists of an identifier which is a PCD

name followed by its parameters:

PCDNAE1 parml ... parmN

No parentheses surround the parameter list. Parameters must be

separated with blanks. Keyword parameters are not accepted.

UNIX Configuration-Building Operators

There are four operators that may be used to connect the

unresolved ports of PCDs. Figure 13 illustrates the use of these

operators in UNIX commands with the resulting configurations. The first

operator is the UNIX pipe (1) which connects the external ports of two

unresolved PCDs as in Figure 13a. Each PCD can have a maximum of two

external ports--one for input from and one for output to a pipe. This

is necessary since the standard UNIX shell does not support

specification of port connections in the command language. Input and

output redirection is supported with the < and > operators respectively

(Figure 13b - c). Output from a PCD may be appended to a file by using

21

22

(a) PCD1 !PCD2

(b) PCDi <DhFILE >OUTFILE

Cc)IL PCD Fl E PCD2 OUTFILE

Cd) PC1 I PCD2 I PCD3 >>APPNFL

Figure 13. UNIXC commnds and resulting configurations.

23

the >> operator as in Figure 13d. Each input, output, and append

operator must be'directly followea by a file name (see later discussion

on tie hierarchical file system).

In Figure 13a, the output port from PCD1 is connected to the input

port of PCD2 with the pipe operator. In Figure 13b, PCD1 has two

external ports. Its input port will be connected to a file named INFILE

and the output will be channeled to a file named OUTFILE. The INFILE

and OUTFILE nodes in the corresponding configuration are fi

nodes, which are nodes that provide access to named files.

With a maximum of one input and one output port, only linear

configurations (pipelines) can be built. The following commands violate

this rule and therefore are illegal:

PCD1 <INFILEI <INFILE2 (two input files)
PCD1 >OUTFILE1 >>APPENDFILE (two output files)
PCD1 <INFILE >CUTFILE ! PCD2 (two output files)
PCD1 ! PCD2 <INFILE (two input files)

Command Sequencing Operators

The &, ;, &&, and !! operators also have special meaning to the

UNIX command processor. Examples are provided in Figure 14 below. '-hen

an ampersand (&) follows a command, the command will be spun off. The

command processor configuration will not terminate; new commands may be

entered and executed concurrently with this configuration.

The semicolon (;) may be used to terminate a command. It is not

required when a single command is entered cn a line as the NEWLINE

character will signal the end of the command. However, when more than

one command is entered on a line as in Figure 14b, a semicolon must

separate the two commands. If a line contains multiple commands and an

error is cetected (the syntax is wrong, a file is not found, mandatory

--

214

parameters are omitted, or there is an error ;n the e.terna' port

connections) the rest of the line is ignored. For example, if

WC <INFILE >CUTFILE; LIST OUTFILE

was typed and INFILE does not exist, the second command on the line,

LIST CUTFILE, will be ignored.

The McCarthy "andf" (&&) and "orf" (!!) operators provide

conditional execution of com , nds[2]. When an "andf" is used, the

command on the right of the && will be executed only if the first

command was successful and is similar to

IF emdl THEN cmd2

The "orf" operator allows execution of the second command to proceed

only if the first was unsuccessful as

IF NOT cmdl THEN cmd2

(a) PCD4 ! PCD5 >OUTFILE &
(b) PCD1 >OUTFILE ; PCD4 ! PCD5
(c) COPY <OLDFILE >NEWFILE && DELETE OLDFILE

(d) ?CDNAME <ISFILE 11 PCDNAME >THATFILE

,e) PCD1 !! PCD2 && PCD3

Figure 14. UNIX commands using sequencing operators.

UNIX Fast Commands

The UNIX command pr .ssor accepts twelve fast commands which are

CREATE, CREATED, DELETE, ADDFD, RENAM, ATTR, LIST, HELP, LS, CWD, PWD,

and SIGNCFF. Many of these fast commands are similar to t of the

Static command processor, e;:cept that UNIX path names are used instead

of OS/32 MT file descriptors. The syntax graph for a path name is found

in the UNIX syntax graphs (Appendix A); a discussion of the semantics of

path names is found in [2, 4]. Path names are illustrated below.

,,, , t ~ o,, ,:' ' -" 1

25

/DIRI/DIR2/DIR3/TARGET
^T2ST
"^-MYFILE

YOURFILE
DIRV/FILEX

A slash (/) that begins a path name indicates the root directory.

Slashes are also used to separate intermediate directories. The last

identifier in a path name is the target name which may be either a

directory or a data file name. A carat (^) indicates the parent

directory.

The CREATE command allocates a new ASCII file and places its name

in a UNIX directory. It requires one argument, the path name of the

file to be allocated. If the file already exists or an intermediate

directory is missing, an error will result.

CREATED allocates a new directory file. It requires the path name

of a new directory file. An error occurs if the designated file already

exists or an intermediate directory is missing.

DELETE is used to delete the specified file and erase its name

from the UNIX directory. It requires one argument consisting of the

path n.ame of an existing file. If the designated file does not exist,

an error message is displayed.

ADDFD is used to make an existing OS/32 MT file accessible to the

UNIX directory. It requires two arguments: the first must-be the new

path name and the second must be the name of the existing MT file

enclosed in apostrophes. If the path name already exists or the MT file

does not exist, an error occurs.

RENAME, ATTR, LIST, HELP, and SIGNOFF work exactly the same as

they co in the Static command processor, except that they require path

names as arguments instead of OS/32 MT file descriptors.

26

LS lists the nax.es of all the files within the current working

directory at the console. It accepts no arguments.

CWD is used to change the current working directory to that of the

path name specified as the argument.

PWD displays (prints) at the console the fully qualified path name

of the current working directory.

Figure 15 lists examples of UNIX fast commands.

CREATE PCDS/GREP
CREATE GREP/PAS
CREATE OBJ
CREATED /PAS
CREATED PAS/HI
DELETE /PCDS/GREP
DELETE ---WC
ADD_FD /PCDS/GREP 'GREP.PCD'
ADDFD 1C 'WC.PAS'
RENAME PCDS/UNIX PCDS/OLDUNIX
ATTR UNIX
ATTR ^TEST
LIST /PCDS/WC
LIST GREP
HELP
LS
CWD /PCDS

CWD/
CWD ^
PWD

SIGNOFF

Figure 15. Examples of UNIX fast commands.

Dynamic. Construction 2f Liea ConfigzurationsLinear

As the name of a PCD file is encountered in a command line, that

file is read in and its templates for parameters and external

connections are matched with the values supplied in the command. If no

errors are detected, the missing parameters (if any) are filled in and

the "resolved" PCD file is then written out with an extension of .RES.

A unique number is appended to its file name so that no corfusion will

27

arise if the command contains multiple instances of a PCD, each with

different parameters (see following example). At this time, the command

processor creates a hierarchical node in a new PCD which "remembers" the

name of the file just written out. This new command PCD will represent

the configuration created at command time. It will contain the names of

all the PCDs found in the command line as well as fileaccess nodes for

pipe input and pipe output (<,>) filenames.

After a node has been created in the command PCD for each PCD and

pipe input or output file in the command, all ports are connected.

Ports that were external to the lower level PCDs are now internal to the

new PCD created by the command processor and are therefore able to be

connected at this time. This fully resolved PCD is given the name

CMD.RES and written out. Its name is then sent to the LINK program,

which will read in and later delete each RES file, assign DTSs, and

complete the configuration before submitting it.

Given the existence of GREP and WC* PCD files, a user could type

in tile c=m-and line

GREP </TXT/HELP 'EXT' ! GREP 'PORTS' ! WC >/TXT/OUTFILE

The command processor would first read in the GREP PCD file. It would

assign the string 'EXT' to the parameter named SOUGHT and then look up

the input file HELP to make sure it is there. The command processor is

responsible for verifying the existence of all input files appearing in

the comL~and line since this is a likely source of user error. If the

input file exists, a fileaccess node is created to read in the file HELP

and this becomes the first node in the command PCD(Figure 16a).

*WC is a UNIX word count program that prints the number of words,
lines, and characters found in its input file.

.... _ _-t-

28

Since this file name was preceded by a pipe Input (<) character, the

port name for ',his fileaccess node is named 'OUT' so that it can be

connected to the port GREP.IN. After the pipe character is cetected and

all arguments are resolved for the GREP PCD, the file is written out

with the unique name GREP1.RES (Figure 17a) and a hierarchical node

referencing the GREP1.RES PCD file is allocated in the command PCD as

shown in Figure 16b.

The next PCD is then read in, which is GREP in this example. The

parameter is now 'PORTS' so this information is filled into the PCD, and

the resolved PCD is written out with the name GREP2.RES (Figure 17b) and

becomes the third node in the command PCD (Figure 16c).

Similarly, a fileaccess node is created with a port named 'IN' for

the output file OUTFILE (Figure 16d) and after the PCD for WC has been

resolved, WC3.RES is written and assigned to a node. The new PCD now

contains five nodes of Figure 16. After all ports have successfully

been connected, the complete command configuration is illustrated by

Figure 18.

S

29

(a) HELP out

(b) i GREPI out

Figure 16. Hiearchica± nodes In H.RES

30 I

(a) GREP1.RES

out

SOUGHT = 'ports'

(b) GREP2.RES

;in wC out""'

4

(Cc 1C3.RES4

Figure 17. Resolved PCD tiles written out by

the UM comMnd processor.

-I

31

0

C 0

'-4

C C)

'-4

.JJ
o"

0Z

I

CHAPTER V

THE MIRACLE COMMAND PROCESSOR

MI>ACLE[4] (Machine Independent Resource Allocation and Control

Language) was chosen for the implementation of dynamic NADEX

configurations allowing arbitrary graphs because it supports named

ports. It is an expression-oriented language and its command syntax is

similar in many respects to UNIX except that the use of named ports

within the language no longer places a one-in one-out linear restriction

on the connection of PCDs.

MI1RACLE commands may either construct configurations or invoke

internal functions. Those commands which build configurations reference

?CDs which are external to the command processor. Internal functions

reference built-in functions ("fast" commands) or strings containing

MIRACLE expressions. These internal functions begin with a '$' to

distinguish them from external PCDs with the same name.

Configuration-building commands

As with UNIX, the basic form of a MIRACLE configuration-building

command consists of a PCD name followed by its parameters:

PCDNAME parml ... parmN

Either positional or named parameters may be used.

If the PCD has external ports, all such ports must be connected at

command time with one of the port connector operators. The simplex

input (<), simplex output (>), append (>), and implicit pipe (!) are

32

33

familiar to UNIX users. In addition, MIRACLE defines several other

port-connecting operators, of which the update (<) and explicit binding

() operators are currently implemented. Each <, >, 0>, or >> operator

must be directly preceded by a port name (all port names within a PCD

must be unique) and followed by a pathname or *<connection number> such

as "*1". The *<connection number> construct represents a user-defined

link or data path between two ports.

If data from a file serves as input or output for a PCD, the PCD

port must be named, followed by the port operator and the path name of

the file:

PCDA Pl<INFILE P2<>RWFL P3>OUTFILE P4>>APPFILE

In this example, PCDA has four external ports. P1 is an input port that

will read data from a file named INFILE. Data may be read and/or written

to the file named RWFL through port P2. P3 will serve as an output port

for data to be written to the file OUTFILE and data will be appended to

the file APPFILE through port P4.

As with UNIX, when a linear configuration is built, the implicit

pipeline operator (!) can be used:

PCD1 ! PCD2

The implicit operator can only be used to connect a PCD that has a

single output port to another PCD with a single input port. Therefore,

port names are not necessary for linear configurations.

However, linear connections can also be described with MIRACLE

syntax in a more explicit manner by naming the ports and connection

numbers:

PCD1 OUT>1I I! PCD2 IN1I

The explicit port connecting operator (I) tells the command processor

_____ _ __

3:4

that all connections ;,'ill be expressly defined, in the above example,

the port PCD1.0UT is to be connected to port PCD2.IN over connection

number 1. When narzed ports are used, configurations are no longer

restricted to being linear. There is a system-defined limit of 16

connections. (A maximum of 32 ports may be connected at command time.)

Exactly two ports may be connected with the same connection number; an

attempt to assign more than two or only a single port to a specific

connection number will be detected by the command processor as an

error.

The explicit connector must always be used when any PCD within a

configuration has more than one input or output port. No mixing of

implicit and explict connections is allowed. The following command is

illegal

PCD1 ! PCD2 IN<*3 !! PCD4 OUT>*3

because PCD2 obviously has two input ports-only one of which is

explicitly connected.

UNIX: COPY <FILEl >FTLE2
MIRACLE: COPY IN<FILE1 OUTPUT>FILE2

UNIX: WC <INFILE I CONSOLE
MIRACLE: WC IN<INFILE ! CONSOLE

or WC IN<INFILE OUT>44 !! CONSOLE IN<"4

UNIX: no equivalent
MIRACLE: PCD1 PORT3<*2 PORT2<*4 PORT1>>*I

Figure 19. Comparison between UNIX and MIRACLE commands.

All configurations that can be built with the UNIX command

processor will also run under the MIRACLE command processor with the

addition of port names where appropriate (see Figure 19). However, the

reverse is not true if the configuration is not linear. Figures 20 and

35

00

c'J
0)-

A

C\I m

A

0V

0

,3

*4 II

36

C~-
-r

AA^

QC ~
40.~o(V

*5*M
A 9 A 0A
V V

N~

0.j 020
4o CL.

- rCz. x -

N N --- L. 0.

*~
4 C7%

37

21 demonstrate two MIRACLE commands and the configurations which

result. The configuration shown in Figure 20 w:ll run a simulation

program. The Dining Philosophers configuration is illustrated in Figure

21. Neither could be built at command time with the UNIX command

processor because they are not linear configurations.

Internal Functions

Besides building a configuration which the command processor must

send to NADEX for execution, the user may invoke internal functions

which are evaluated within the command processor. The names of these

internal functions must be preceded by a dollar sign ($) to distinguish

them from external names (PCDs). The basic form for a function

invocation is:

$functname pl ... pN

where "funct-name" is the name of a built-in (primitive) function or

previously stored string.

2.jt-.jin f. Many of the MIRACLE built-in functions are

similar to the "fast" commands implemented in the two command processors

described previously. Those which are currently implemented in MIRACLE

are described below with examples provided in Figure 22.

ALLOC and ALLOCD operate the same as the UNIX CREATE and CREATED,

respectively. DELETE, ADD-FD, ATTR, LIST, LS, CWD, PWD, and SIGNOFF

operate the same as their UNIX counterparts.

The internal function HELP ($HELP) displays at the console the

names of MIRACLE fast commands; the external command HELP (with no ,)

causes a configuration to be executed which displays executable external

names (PCDs).

-"_____________Y-'7-_ 7 -m, ,,

38

The internal function DCL allows the user to aeclare an _ntern-!

variable of type string or boolean. The syntax for this command is:

$DCL $var_name: var_.type

where "varname" is a unique internal variable and "var._type" is either

STRING or BOOLEAN.

EDIT displays the contents of an internal string variable at the

console. It requires one argument which is the name of the string

variable.

The internal function NOT will negate the result of the

parenthesized expression that follows it. if, for example, the

expression is

$NOT ($ATTR /MIRC/PCDS)

and Lhe pathname exists, the parenthesized expression result is TRUE.

The NOT function will negate this result--the result of the entire

expression is FALSE.

$ALLOC /THIS/NEWFILE
$ALLOCD ^THAT/NE4DR
$DELETE /THIS/USELESS/FILE
$ADDJFD ADDEE 'ADDOR.PAS'
$ATTR IS/IT/REALLY/THERE
$LIST -GROCERIES
$EDIT SSIMSEQ
$HELP
$CWD /TOOLS
$ PWD
$LS
SDCL $A : BOOLEAN
$DCL $STRV : STRING
$NOT ($CWD ^OLDDR)
$NOT (tPWD)
$NOT (PCD2)
NOT (PCD1I PCD4)
$SIGNOFF

Figure 22. Examples of MIRACLE fast commands.

39

Internal string .gins . A user-defined internal string

function may be executed by typing its name followed by its arguments.

The com.and string may be stored with the construct

$INTFN ' e

where Ile" is any valid MIFACLE expression, including other internal

functions or configuration-building commands.

Either positional or keyword parameters may be included in the

command string. A pound* sign (#) followed by a number indicates a

positional parameter. A pound sign followed by an identifier may be

used for named parameters. For example:

$FN1 := '$CWD #1; $LS'

stores the string containing two built-in functions in the internal

function variable FN1. This function may be invoked with the construct

$FN1 /MIRC/PCDS

which causes the command processor to evaluate the contents of the

expression stored in the string. /MIRC/PCDS will be matched with the

argument required by $CWD. The current working directory will be

changed to /MIRC/PCDS and LS will cause the contents of this directory

to be listed at the console.

Similarly, the internal string function FN2 may be initialized and

later invoked with the following command sequence:

$FN2 := '$CWD #PN; WC 1N<#2 OUT>OUTFILE'

$FN2 PN=/PCDS GREP/PAS

Keyword parameters are counted and may reset the positional counter. In

the preceding example, the named parameter PN is counted as parameter

number one and the parameter GREP/PAS is parameter number two.

40

Secuencing operators

The semicolon (;), NE.,'LITE, and independent fork (&&) 2haracters

are birary operators which must be cirectly preceded and irectly

followed by an expression. Thus, a command such as

$LS;

followed by a 11E.-LINE character will result in a

SEQUENCING OPERAND ERROR

because the NEWLINE directly followed the semicolon. The command

3LS; $PWD

is perfectly acceptable; the semicolon is a binary operator which

separates the two expressions.

The independent fork (&&) is a spin off. Gray also included

dependent forks (&) but these were not implemented.

Commands may occupy multiple lines by directly preceding the

NJELINE character by a backslash (\) to escape the NEWLINE. For

example,

$CWD
/DR/PCD

will result in an error because of the NEWLINE between $CWD and its

argument. However, in the following two examples, the NEWLINE has been

preceded by the backslash character, causing the NEWLINE to be ignored.

$CWD \
/DR/PCD

$LS; \
SPWD

The use of the escaped NEWLINE is particularly useful when commands are

very long (as in Figures 20-21).

____ _-.--.-,.-i

41

Exrsso resgults ADJ control structures

Since MIRACLE is an expression-oriented language, every expression

returns a resuL.• However, only .ssions on the right hand size of a

sequencing operator are remembered; left hand side results are

effectively ignored.

:iIXACLE supports IF-THEN-ELSE-FI, EXIT, and LOOP control

structures. The reserved words used in these control structures must be

preceded by a period (.) to distinguish them from external names or

internal functions.

IF expressions are of the form:

.IF e .THEN e .FI or .IF e .THEN e .ELSE e .FI

where "e" is any valid MIRACLE expression. (IF expressions can thus be

nested.) Since one of the productions for an expression is a binary

operator (such as a NEWLINE) separating two expressions, the following

construct can be produced:

.IF $pwd
$ls .THEN pcd parml .FI

A more useful command sequence might be:

.IF pas32 <testprog >errfile \
.THEN .IF pestab testprog .THEN testprog .FI \
.ELSE $list errfile; pedit <testprog .FI

The first expression would run the Pascal compiler configuration

with input from a program named TESTPROG. Output from the compiler

would be channeled to a file named ERRFILE. Assuming that the compiler

was modified to produce a return code that indicated when any errors

were detected, the result of the IF expression would determine further

action. If no errors were found, the value of the first expression

would be TRUE so the THEN-clause would be executed. If the PESTAB

operation on TESTPROG was successful, the program would then be

_ _ _.. .. ____ -

42

executed. However, it an error was cetected during the compilation, the

ERRFILE (containing the list of detected errors) would be listed at the

console and the program opened for editing.

.EXIT must be followed by a boolean TRUE or FALSE and is used to

terminate a function. The boolean value then becomes the value of the

expression. For example:

$fn3 := ' .IF $not $attr myfile \
.THEN .EXIT FALSE \
.ELSE edit myfile .FI

The .LOOP control structure is terminated with the reserved word

.END . Used within a loop, the reserved word .NEXT passes control back

to the beginning of the loop. As with .LEAVE, its appearance is only

valid within a loop. The reserved word .LEAVE must be followed by an

expression. It exits the loop, and the value of the expression

following it becomes the value of the loop expression.

CHAPTER VI

SUMMARY AND CONCLUSIONS

The development of the Static, UNIX, and MIRACLE prototype command

processors was motivated by four objectives. The investigation of the

sufficiency of the NADEX operating system to support arbitrary dynamic

configurations was a primary objective. Under the UNIX command

processor, linear dynamic configurations were realized. With the

MIRACLE syntax allowing the user to specify ports and connections

between th.ese ports, arbitrary configurations were constructed at

command interpretation time and successfully executed, thus proving the

sufficiency of the NADEX OS.

A second area of investigation was the sufficiency of PCDs. The

information needed to implement any of the command processor features

was found to be present in the PCD record, as well as information

necessary to provide the user with help messages. Not all command

processors used every field in a PCD record (named parameters are not

used in UNIX, for example) but no information was found to be lacking.

The development of portable command processors was the third

objective. These three command processors can be used with any

operating system that meets three criteria: The operating system must be

able to realize configurations represented by PCDs[9]. The system must

be interactive, allowing the user and the command processor to

communicate. Finally, the operating system must support a file system.

43

44

Modifications to the command processors may te required to interface to

t. e file and console systems, but these interfaces are well-defined and

should be easily adaptable. These command processors may be used with

any operating system which supports the execution of configurations

constructed with PCDs. In fact, such an operating system must use one

of tiese (or a similar one) in order to build dynamic configurations.

The fourth objective was the exploration of the concept of user

adaptable command processors. It is significant that the command

processors for the NADEX operating system were designed to execute, not

as an integral part of NADEX, but on top of the operating system. This

concept allows flexibility in the creation and choice of command

processors. Three very different command processors have been created.

The NADEX user is free to choose any one of the three, tailor one to a

particular need, or create a new one.

The Static command processor executes completely connected

configurations. Although dynamically connected configurations may not

be executed, any configuration that can be built at command

interpretation time with UNIX or MIRACLE can also be constructed as a

static configuration. This command processor does not need to connect

ports or contain extra PCDs so it is relatively small and efficient.

The UNIX command processor is useful for creating dynamic linear

configurations. It is best utilized for thoe "one of a kind"

configurations that are not used enough to justify building a static

configuration that could be used repeatedly. Its syntax is simple and

much easier to use that of MIRACLE.

Dynamic configurations containing arbitrary grapiis may be

constructed with the MIRACLE command processor. With its control

p..|~---- _______________________________________ ______

45

structures and string functions, it is an extremely powerful

interpreter, but its syntax is complicated because a great variety of

symbols must be manipulated by the user.

Implementation

The Static, UNIX, and MIRACLE prototype command processors were

developed in Sequential Pascal on the Interdata 8/32. Early testing was

done under SOLEX, which was a static, relatively small version of NADEX

used for development purposes. The dynamic connection of ports required

the facilities of NADEX, under which all three command processors now

run.

The Static and UNIX programs took approximately seven months to

develop. A great deal of that time was spent in learning how to

manipulate PCD records and' interface with the file system and LINK

program. During this time, the PCD record format changed twice and the

entire system was under development so there was little or no

documentation upon which to rely. Although the MIRACLE command

processor implements a much more powerful language than either of its

predecessors, its relatively short implementation time of two months

reflects the experience gained previously.

With its strict type checking, powerful data structures, and

self-documenting code, the choice of SPascal as the implementation

language has had a favorable impact on the development of the command

processors. The Symbolic Debugger was also very helpful, especially for

tracking "phantom" errors that were a result of interface problems with

LINK or the subsystems or when it was not clear where the error

originated.

46

Command Lines of Coue Data
Processor Code Space Space

Do 650 6K 2K
Static 2020 16K 6K
UNIX 2700 30K 26K
MIRACLE 3400 41K 32K

Figure 23. Comparison of command prc'essors.

Brinch Hansen's command processor DO performs no parameter type

checking: all parameters are passed to the appropriate programs without

interpretation. This means that each program brought up by DO must

parse its own parameters. The command processor is nice and small (see

Figure 23), but much code for parsing parameters has to be duplicated by

the called programs.

The NADEX command processors read in PCDs which contain templates

for expected parameters and external ports. If a program uses a

parameter that is a lexical pattern which does not match one of the

comaand processor types, an array of 32 characters may be passed to the

program for it to parse as it wishes. Otherwise, all arguments in the

command line are parsed and compared with the templates. Programs are

not called unless all ports are connected and their parameters are of

the correct type, number, and order.

If any discrepancies are found such as parameters of the wrong

type, missing or extra parameters, or incorrectly connected ports, an

error message is displayed at the user's console. Mandatory and

optional parameters are listed with their types and default values

followed by external ports names (see the user sessions in Appendix C).

A deliberate attempt has been made to include descriptive error

messages so that the user is given as much help as possible with ports

and parameters. This is nice for the user, but not without its cost as

47

indicated by the increased code and data sizes of the NADEX command

processors as listed in Figure 23. The command processor must reserve

approximately 4600 bytes of data space for each PCD record. Since the

Static command processor uses only one PCD at a time, its data space is

small. Both UNIX and MIRACLE must reserve room for at least two

PCDs--the PCD whose arguments are being parsed and the PCD being created

for the command configuration.

The Static and UNIX command processors were bootstrapped off of DO

and owe much of their structure and parsing routines to that program.

They use a two-pass method of interpretation: the lexical and syntactic

analysis is performed first, followed by a semantic analysis.

Difficulties encountered with interpreting pipeline commands contributed

to the use of a different approach in MIRACLE.

The MIRACLE command processor uses the same lexical routines, but

its expression-oriented nature led to the use of modified

operator-precedence parsing. Since it allows recursive evaluation of

expressions, its data space is significantly larger than the other

command processors. Further details of the implementions may be found

in a technical report[5].

Further research

The command processors have yet to be vigorously tested by users

other than those involved in the implementation. More user experience

is needed to make the error messages as user-oriented as possible.

MIRACLE presents the most complicated and as yet, untested user

interface.

tt

48

As mentioned in the Introduction, port moue nd protocol

information should perhaps be included in the help messages. Alo,

instead of abandoning a command when missing ports or parameters are

detected, the command processor might prompt the user for the missing

information. The original UNIX shell allows input and output bindings

to default to the console, which also might be nice to implement with

the NADEX command processors.

The UNIX shell handles many of the same control structures that

are currently implemented in MIRACLE. If these prove to be valuable,

they could be added to the NIADEX version of UNIX. Other extensions to

the languages, such as pattern matching, are also under investigation.

Of particular importance are task control functions such as the

MIRACLE's INIT, START, STOP, WAIT, KILL, etc. These have not yet been

implemented as the status of an executing task is not currently

available to a NADEX command processor.

UNIX and MIRACLE use a hierarchical file system[t0] which is

currently superimposed on the OS/32 MT "flat" file system. This can be

rather confusing (a file created with OS/32 MT is not accessible to the

hierarchical system until it has been manually added). The file system

does not currently support the RENAME command.

Return codes from configurations which have been executed are not

currently available to the command processor. Although the UNIX "andf"

and "orf" and MIRACLE control structures depend on these return codes,

they are currently implemented as always returning TRUE.

An interesting area of research lies with the graphical

representation of configurations as input to a command processor. The

user would theoretically use a light pen to "draw" the configuration to

49

be executed.

Since tLesq command processors were developed as prototype models,

small code size and efficiency were not emphasized during development.

Perhaps their real success lies with the fact that both UNIX and MIRACLE

are friendlier than the original systems.

_ _ _ __ 7

APPENDIX A: SYN.TAX GRAPHS

V

DO Syntax Graphs

1. command

!--> ; -- >1

------- > command statement --------------- >

2. command statement

S> program name ---------- > parm list ---- >

3. parm list

I !---> (-------- > parm ---- --- >!

4. parm

-------> boolean -------------- >
! !

!--> identifier ---- >!

'---> integer ------ >

50

7

Static Syntax Graphs

1. command

!--> ; -- >!

-command statement

2. command statement

> pcd name ----------> parm list-

!---> fast command --->!

3. pcd_name

> mtfd---------

4. mt_fd

!--> id -- > : >

!< ---------

------> id---
II
I ! - !-> P ->I- !
! ! I I I

!-> G ->!

The length of this identifier must be <= 3.

51

52

5. fast command

!---> %alocate ---A

!> delete ...-A

! ..>rename ---- > !

.... >! > attr ------ -.

!-.> list-

- > help ---- >!
I I

I-... signoff --->!

6. parm list

--- >

I I

------------.... > parm ---- --- --- >!

1<-- NL <--I

7. parm

I---> keyword --> -->1 I---> iaentifier --->!

!-- - - - -- > integer ---- >!

!- -----> boolean ---- >!

1 ---- > 'string' ---- >!

- - - - - - -> mtfd ------ >!

8. keyword

-------> identifier------------

- _ _ _ _

UNIX Syntax Graphs

1. command statement list

. > command statement--------------

< ;--------- < ---------

!< -------- L < ---------

2. command statement

!--> & -- >!

-----> command ------ -------------------------

1<----- ----

< ------

&&- < ------

3. command

------> configuration command ------------- >

! I

I----------- > f'ast command--------- >!

4. configuration command

! !

-------------. >!

-------->pcd name ----------- > arglist------------

I< ------------- ! < --------------------------

53

S i

54

5. pcd name

..- > path name -

6. path name

-- > identifier --- > : - >! !- - - >! ----- ----- ----- >

--- > identifier --->

!< ------

* this escape allowed only if path name 0 null

7. fast command

!--> create --->!

!-> created -->1

'--> delete --->!

'--> add_.fd --- >1
!>arg ------ >!

!-->rename--- ! !
I ! '---> path name -- >1

!---> attr ---- >!
.. >! I--------------------------------------

!---) list ---- >!
S !< ----------------------

-- > help ---- >!

! ..> Is ----- > !! !

I--- wd ---- > !

! ..> pwd ---- > I
I !

!--> signofft -->!

55

8. arglist

------------------- > < ------------- > path name----------
! ! !

> -----> >>!
I ! I I

! ! !> > -->1
I I

- > arg ----------------------- >!

!< ---

9. arg

!------ > 'string' ------ >!
t I

t .--- > identifier ----- >1
----------- >! I ---------- >

------ > integer ------- >
! !

------ > boolean ------->!

14

~- - ~ -__

MIRACLE Syntax Graphs

1. construct

!< - - - - - - - - - -

-> exp - >
I

I--> comment -- >!

2. exp

'--> number ->!

1--> string ->!

I--> identifier - >!

I--> command - >!

!- > *digits -- ->!

$--> Sfunction - >1

1--> #simple name - >!

#- > digits -- ->!

I I
I... - exp i-- ---------------- >

--> exp - binaryop -> exp ----------------------- --- >!

--> IF exp .THEN exp -> .FI - >!

!--> F exp .THEN exp -) .ELSE -> exp -> .FI -- >!

I--> .LOOP -> exp -> .END ------------------------------- >!

!-> .NEXT --- >

1--> .LEAVE -- >!

I -> .EXIT -------------------- ------------------------- >1

56

57

3. number

------ > digit ------ >
!<-
!< -- - - - -

4. digit

:--> o -- >:

!--> 2 -- >I
I I
!--> 2 ->3
3 3

-> 3 -->!
I !

i--> 4 -- >I
_ >! - ->

1--> 5 -->!
! !

;--> 6 -->
> 8

1--> 7
3 1
3--> 8 ->1
I !

I--> 9 -- >3

5. string

....> 'any characters' ---- >

6. identifier

------- > simple name---------------
! 3

3--> pattern identifier -->I
, !

path name ----------- >

7. simple name

----- > letter---------------------------------

! 1
1 .--- > name chars ---- >1

58

8. name chars

I---> digit --->!

>! ---- > -- - --!

! ->letter --- >!! I

!< -----------------------

9. pattern identifier

1< ------------------------------------

--------------------------- > pattern set--------------------------
I I I

1--> simple name-->! !--> name chars -->!

10. pattern set

--> ------------ >!

---> ? ---- >

!--> [tag char] --->I
! !

I--> [-tag char] -->!

An asterisk matches any number of characters; the question mark
matches a single character.

11. tag char

-------> name chars------------

<------< ---------

___ ----- l___

59

12. path name

!--> simple name -> >->! -> >! ! . -. >

-> simple name --- >

I > - !< - < -

0 this escape allowed only if path name > null

13. command

-------- > path name --------------------- >

!--> parms --)!

14. parms

1< ------------------------------------
I !

-------- > simple name -- > =------->exp ---------- >

>---------------------->!

15. function

.....- > simple name ------------------

1--> parms -- >I

16. letter

1---> a --->1I .
! . I

!---> z --->!
. .. > ! ! - - - >

1--> A --->I
I . I

I • !
---> Z --->I

I I
.-. .. _ _ _ _ _ _ _ _ : .; -. - .. . "

I

60

17. binaryop

!---> && . >! "independent fork"
! !

> ----- >! "implicit pipeline"
I I

!---> >! .! "all links explicit"
! I

I---> 0 ----- >! "update binding"
I !
I---> > ------ >! "simplex output"

> >> ----- >1 "append"

I---> < ------ >1 "simplex input"

!---> <<- >1 "input from string"
I !

!---> !< ----- >! "input from a variable"

'---> !> ------ > "output to a variable"
, I

>! --- >>! ---- > "assignment"

I---> (+) >1 "addition"
! !

> (-)>1 "subtraction"
I I

I---> >1) >1 "multiplication"

! -> (/) ... >! "division"

I---> (EQ) --->I "equal"

I---> (NE) --->I "not equal"

I I--> M .. > "and"

--> (! . .>! "or"

!---> ; --- > "sequencing operator"
I I

I---> N ------ >1 "sequencing operator"

18. comment

------ > "any characters" >

V ____

AFPENDIX B

"41* * * * * *ki iit w k it witii * ** f 4 -a ik ir it 11 w t*4****** * f* * * * * t. 4 * 1 it *4* ic i it

NAE NAIEPEI
f

CONST PAGESIZE = 512; "SIZE OF DATA PAGE"
PAR?_SIZE = 32; "SIZE OF PARAMETER BLOCKS"
MAXDTS = 40; "MAX GLOBAL DTS ID"
MAX_PORT 20; "MAX PORT ID"
MAX__PARM 10; "MAX PARM ID"
SVC1_BLOCKSIZE = 24; "SIZE OF SVC 1 PARM BLOCK"
SVC7_BLOCKSIZE = 28; "SIZE OF SVC 7 PARM BLOCK"
SD = 700; "PREFIX STACK DEPTH"

CONST NL = '(:10:)'; CR = '(:13:)'; ETB = '(:23:)';
EM = '(:25:)'; BEL '(:07:)';

TYPE PAGE = ARRAY [I..PAGE_SIZE] OF BYTE;
PARAMETER = ARRAY El..PARMSIZE] OF BYTE;
UNIV_SVC1_BLOCK = ARRAY (..SVCIBLOCKSIZE] OF BYTE;
UNIVSVCTBLOCK = ARRAY [I..SVC7_BLOCK.-SIZE] OF BYTE;

TYPE DTS_INDX = l..MAXDTS; DTS-INDXO = 0..MAXDTS;
PORTINDX = I..MAXPORT; PORT__INDXO = O..MAXPORT;
PARM_INDX = I..MAX-PARM; PARM_INDX0 = O..MAXPARM;

TYPE DTS_SET = SET OF DTS__INDX;

TYPE BUF_TYPES = (PARMBUF, DATA__$BUF, NIL__BUF); "BUFFER TYPES"

TYPE PREFIX-TYPES = (NATIVE_PREFIX "0", PASDRIV&_PREFIX "1");

TYPE REQCODES = (REQOK "0", REQ_NODE__ABORT "l", REQDTSABORT "2",
REQDEFER "3", REQUNRESDTS "4", REQ..PROTERROR "5",
REQBAD_PORT "6"); "PREFIX DTS OPERATION RETURN CODES"

PROCEDURE READ-CHAR (PORT: PORTINDX; VAR C:CHAR); SD;

PROCEDURE WRITE-CHAR (PORT: PORT..INDX; C:CHAR); SD;

PROCEDURE READ-DATA (PORT: PORTINDX; VAR DATA: UNIV PAGE;
VAR LENGTH: INTEGER; VAR RESULT: REQCODES);
SD;

61

__ L

62

PROCEDURE WRITEDATA (PORT: PORT_INDX; DATA: UNIV PAGE;
LENGTH: INTEGER; CONDITIONAL: BOOLEAN;
VAR RESULT: REQCODES); SD;

PROCEDURE READ_PARM (PORT: PORTJINDX; VAR PARM: UNIV PARAHETER;
VAR RESULT: REQ._CODES); SD;

PhOCEDURE WRITEPARM (PORT: PORTINDX; PARM: UNIV PARAMETER;
CONDITIONAL: BOOLEAN; VAR RESULT: REQ_.CODES);
SD;

PROCEDURE MAP-PORT (PORT: PORTINDX; BUF.TYPE: BUF_TYPES;
VAR RDTS: DTSINDXO; VAR WDTS: DTS_INDXO); SD;

PROCEDURE AWAITEVENTS (VAR READWAITS, WRITEJAITS: DTSSET;
VAR READREADY, WRITEREADY: DTS_SET;

VAR RESULT: REQCODES); SD;

PROCEDURE DISCONNECT (PORT: PORTINDX; VAR RESULT: REQCODES); SD;

PROCEDURE FETCH-USERATTRIBUTES; ED;

PROCEDURE SUBMITCONFIG; SD;

PROCEDURE SVC1 (VAR PARM: UNIV UNIVSVCIBLOCK); 64;
PROCEDURE SVC7 (VAR PARM: UNIV UNIVSVC7_BLOCK); 64;

PROCEDURE FETCH_FARM (PARMID: PARM_INDX; VAR PARM: UNIV PARAMETER;
VAR OK: BOOLEAN); SD;

PROCEDURE LOADOVERLAY (PORTID: PORTINDX; VAR OK: BOOLEAN); SD;

PROCEDURE INIVCKEOVERLAY (VAR ARG: INTEGER;
PREFIXTYPE: PREFIXTYPES;
VAR RESULT, LINENO: INTEGER); SD;

PROCEDURE CANCELJODE; SD;

PROCEDURE CANCELCONFIG; SD;

PROCEDURE BREAKPNT (LN: INTEGER); 64;

APPENDIX C

SAMPLE USER SESSIONS

NADEX PROTOTYPE FILE SUBSYSTEM
NADEX PROTOTYPE LINKER ROO-O0 * STATIC *

NADEX PROTOTYPE STATIC COMMAND PROCESSOR RO0-O

->HELP

THE FOLLOWING "FAST" COMMANDS ARE AVAILABLE:

ALLOCATE FD "ALLOCATE A NEW FILE"
DELETE FD "DELETE AN EXISTING FILE"
ATTR FD "DISPLAY THE ATTRIBUTES OF A FILE"
LIST FD "DISPLAY AN ASCII FILE AT THE CONSOLE"
SIGNOFF "TERMINATE SESSION"
RENAME OLDFD,NEWFD "RENAME A FILE"

THE FOLLOWING CONFIGURATIONS ARE AVAILABLE:

PAS32 "RUNS SEQUENTIAL PASCAL COMPILER"

UNIXLINK "BRINGS UNIX CMDP AND LINK CONFIGURATION UP"
MIRC "BRINGS MIRACLE CMDP AND LINK UP"
DUMP "DISPLAYS A PCD"
HI "DEMONSTRATES A FRIENDLY SYSTEM"
PCD "BUILDS A NEW PCD"
DINPHIL "DINING PHILOSOPHERS CONFIGURATION"
SIMTEST "SIMULATION CONFIGURATIONS"

ENTERING THE NAME OF ANY COMMAND OR CONFIGURATION
WILL DISPLAY ITS CALLING FORMAT.

->ALLOCATE NEW.TXT
->ATTR NEW.TXT

FILE SYS2:NEW.TXT/P HAS 0 RECORDS OF LENGTH 512
->RENAME NEi. TXT, OLD. TXT
->DELETE OLD.TXT
->ATTR OLD. TXT

FILE NAIE ERROR: SYS2:OLD.TXT/P

63

}-|,77

- I

6'!

->TEST

::ANDATORY P A4METER OMITTED

TRY AGAIN:

TEST INFILE : FD,
[PROGFILE: FD DEFAULT(SYS2:GREP.IIG/P)],
[CODESP INT OEFAULT(5)],
[DATASP INT DEFAULT(10)],
[OLAYSP I:T DEFAULT(O)],
[INT INT DEFAULT(1111)],
[BOOL : BOOL DEFAULT(TRUE)J,
[STRING : STRING DEFAULT('HI THERE')],
[ID : ID DEFAULT(ID)],
[FILENAME: FD DEFAULT(SYS2:FILENAME.TXT/P)]

->** ILLEGAL$$CHARACTERS???

TRY AGAIN:
CONFIGURATION_NAME

OR
CONFIGURATION_NAME [KEYWORD = ARG, ...

... , KEYWORD = ARG
USING

ARG: BOOLEAN, INTEGER, IDENTIFIER, STRING, FILEDESCRIPTOR, OR ARGLIST
->UNIXLINK
NADEX PROTOTYPE LINKER ROO-O0
WORKING DIRECTORY: /HELP * UNIX *
UNIX PROTOTYPE COMMAND PROCESSOR RO0-O
->HELP
THE FOLLOWING "FAST" COMMANDS ARE AVAILABLE:

LS "LIST FILE NAMES IN THE CURRENT DIRECTORY"
PWD "PRINT CURFENT WORKING DIRECTORY"
CWD PN "CHANGE WORKING DIRECTORY TO PATH NAME"
CREATE PN "CREATE A NEW ASCII FILE"
CREATED PN "CREATE A NEW DIRECTORY FILE"
DELETE P.0 "DELETE AN EXISTING FILE"
ATTR PN "DISPLAY THE ATTRIBUTES OF A FILE"
LIST PN "DISPLAY AN ASCII FILE AT THE CONSOLE"
ADD_FD PN 'MT_FD' "ADD THE MT_FD TO THE CURRENT DIRECTORY"
SIGNOFF "TERMINATE SESSION"

THE FOLLOWING CONFIGURATIONS ARE AVAILABLE:
PAS32 "RUNS SEQUENTIAL PASCAL COMPILER"
MIRC "BRINGS MIRACLE CMDP AND LINK CONFIGURATION UP"
COPY "COPIES ASCII FILES"
WC "PRINTS NO. CF CHARACTERS, WORDS, AND LINES"
GREP "SELECTS LINES CONTAINING SPECIFIED STRING"
HI "DENONSTRATES A FRIENDLY SYSTEM"
PCD "ALLOWS USER TO CREATE NEW PCDS"
UDUI4P "DISPLAYS A PCD AT THE CONSOLE"

ENTERING THE NAME OF ANY COMO4AND OR CONFIGURATION
WILL DISPLAY ITS CALLING FORMAT.

__ _ _ _ _ _ _ _ _ _ _ _ _ _

65

- >$H EL P

TRY AGAIN
PCD _NAME

OR
PCD_-NAME EARC ARG...J IE<PN] I PCD NAME [ARG ARG ...] I [>PN I [&I
USING

ARG: BOOLEAN, INTEGER, IDENTIFIER, STRING, PA'TH NAME, OR ARGLIST
->CWD /KIM
WORKING DIRECTORY: /KIM
->LS
ENTRIES IN DIRECTORY /KIM

SYS2:UOOOOOOO.DIR/P
CONWAY SYS2 :CONWAY. TXT/P
PCDS SYS2:UOOOOO1D.DIF/P
LINK SYS2:UO00OO2D.DIR/P
UFSS SYS2:UOOOOO2E. DIR/P
PCD SYS2:UO00002F.DIR/P
DUMP SYS2:U0000030. DIR/P
CSS SYS2:U0000033.DIR/F
I MG SYS2:U0000038.DIR/P
PBM SYS2:U0000036.DIR/P
LS SYS2:UOOOO0l44.DIR/P
ED SYS2:UOOOOO049.DAT/P

->CWD^
WORKING DIRECTORY:/
->CWD /HELP; LS
WORKING DIRECTORY: /HELP
ENTRIES INl DIRECTORY /HELP

SYS2:UOOOOOOO.DIR/P
FILE SYS2 : U000039 .DAT/P
UNIX SYS2 :UNIXHELP. TXT/P
CMDP SYS2 :CMDPHELP.TXT/P

->ALLOCATE NEWFILE
FILE NA! ERROR: SYS2:ALLOCATE.PCD/P
->CREATE NEW-FILE
SYS2:UOOOOO 50./P
->ATTR NEtIFILE

FILE SYS2:U0000050.DAT/P HAS 0 RECORDS OF LENGTH 512
->LS
ENTRIES IN DIRECTORY /HELP

SYS2:UOOOOOOO.DIR/P
FILE SYS2:U0000039.DAT/P
UNIX SYS2 :UNIXHELIP.TXT/P
CMDP SYS2 :CMDPHELP.TXT/P
NEl-,FILE SYS2:U0000050 .DAT/P

66

->CCPY

ERROR IN PORT CONNECTIOn,S:
CCPYI.IN, COPYI.CUT

->COPY <UN:XHELP 'NE ,IFILE

PATHNAtE ERROR: UNIXBEELP

TRY AGAIN:

COPY
EXTERINAL PORTS: IN, OUT

->COPY <UNIX >N1EWFILE
NADEX PROTOTYPE LINKER ROO-CO
WORKING DIRECTORY: 'HELP
UNIX PROTOTYPE COMMAND PROCESSC. P00-O0
->LIAST NEWFILE
FILE NAME ERROR: SYS2:LIAST.PC2/P
->LIST NEWFILE
THE FOLLOWING "FAST" COMM.ANDS ARE AVAILABLE:

LS "LIST FILE NAMES IN THE CURRENT DIRECTORY"
PWD "PRINT CURRENT WORKING DIRECTORY"
CWD PN "CHANGE WORKING DIRECTORY TO PATH NAME"
CREATE PN "CREATE A NEW ASCII FILE"
CREATED PN "CREATE A NEW DIRECTORY FILE"
DELETE PI "DELETE AN EXISTING FILE"
ATTR PN "DISPLAY THE ATTRIBUTES OF A FILE"
LIST PN "DISPLAY AN ASCII FILE AT THE CONSOLE"
ADDFD PN 'NT_FD' "ADD THE MTFD TO THE CURRENT DIRECTORY"
SIGNOFF "TERMINATE SESSION"

THE FOLLOWING CONFIGURATIONS ARE AVAILABLE:
PAS32 "RUNS SEQUENTIAL PASCAL COMPILER"
MIRC "BRINGS MIRACLE CMDP AND LINK CONFIGURATION UP"
COPY "COPIES ASCII FILES"
WC "PRINTS NO. OF CHARACTERS, WORDS, AND LINES"
GREP "SELECTS LINES CONTAINING SPECIFIED STRING"
HI "DEMONSTRATES A FRIENDLY SYSTEM"
PCD "ALLOWS USER TO CREATE NEW PCDS"
UDUMP "DISPLAYS A PCD AT THE CONSOLE"

ENTERING THE NAME OF ANY COMMAND OR CONFIGURATION
WILL DISPLAY ITS CALLING FORMAT.

->ATTR NEFILE

FILE SYS2:U0000050.DAT/P HAS 3 RECORDS OF LENGTH 512

' i

67

->GREP

MANDATORY P.PAMTER OMITTED

TRY AGAIN:

GREP SOUGHT STRING
EXTERNAL PORTS: IN, OUT

->GREP 'ALL' <NEWFILE ! CONSOLE && LS
PCD "ALLOWS USER TO CREATE NEW PCDS"

WILL DISPLAY ITS CALLING FORMAT.

NADEX PROTOTYPE LINKER ROG-O0
WORKING DIRECTORY: /HELP
UNIX PROTOTYPE COMMAND PROCESSOR FOG-O0
ENTRIES IN DIRECTORY /HELP

SYS2 :UOOOOOOO.DIR/P
FILE SYS2:UO000039.DAT/P
UNIX SYS2:UNIXHELP. TXT/P
CIMDP SYS2 :CMDPHELP.TXT/P

->GREP 'AL' <NEWFILE ! WC I CONSOLE
58
12
2

NADEX PROTOTYPE LINKER ROG-O0
WORKING DIRECTORY: /HELP
UNIX PROTOTYPE COMMAND PROCESSOR ROO-O0
->GREP 'AL' <NEWFILE ! GREP 'US' I WC I WC ! CONSOLE & HI
4

3
2

* * T k HELLO YOURSELF * * * * * * * *

NADEX PROTOTYPE LINKER ROG-O0
WORKING DIRECTORY: /HELP
UNIX PROTOTYPE COMMAND PROCESSOR POG-O0
->GREP 'AL <NEWFILE ! WC

STRING TOO LONG.

TRY AGAIN
PCDNAME

OR
PCDNAM [ARG ARG... [<FD I [! PCDNAM EARG ARG ...]] [>FD I [&]

USING
ARG: BOOLEAN, INTEGER, IDENTIFIER, STRING, FILEDESCRIPTCR, OR ARGLIST
->GREP 'AL' <NEWFILE I WC

ERROR IN PORT CONNECTIONS:
WC2.OUT

68

->GFEP WC

iANDATORY P.ARAMETER OMITTED

TRY AGAIN:

GREP SOUGHT STRING
EXTERNAL PORTS: IN, OUT

->MIRC
NADEX PROTOTYPE LINKER ROC-CO
WORKING DIRECTORY: /KIM/IMG * MIRACLE
MIRACLE PROTOTYPE COMMAND PROCESSOR RO-O wit

->$HELP
THE FOLLOWING "FAST" COMMANDS ARE AVAILABLE:

$LS "LIST FILE NAMES IN THE CURRENT DIRECTORY"
$PWD "PRINT CURRENIT WORKING DIRECTORY"
$CWD PN "CHANGE WORKING DIRECTORY TO PATH NAME"
$ALLOC PN "ALLOCATE A NEW ASCII FILE"
$ALLOCD PN "ALLOCATE A NEW DIRECTORY FILE"
$DELETE PN "DELETE AN EXISTING FILE"
$ATTR PN "DISPLAY THE ATTRIBUTES OF A FILE"
$LIST PN "DISPLAY AN ASCII FILE AT THE CONSOLE"
$EDIT $INT_CMDFILE "DISPLAY AN INTERNAL COMMAND FILE"
$DCL VAR: TYPE "DECLARE A VARIABLE NAME AND ITS TYPE"
$NOT EXP "NEGATES THE BOOLEAN RESULT OF THE EXP"
$ADD_FD PNI 'MTFD' "ADD THE MT_FD TO THE CURRENT DIRECTORY"
$SIGNOFF "TERMINATE SESSION"

->HELP
THE FOLLOWINIG CCNFIGURATIONS ARE AVAILABLE:

PAS32 "RUNS SEQUENTIAL PASCAL COMPILER"
NiIRC "BRINGS MIRACLE CMDP AND LINK CONFIGURATION UP"

COPY "COPIES ASCII FILES"
WC "PRINTS NO. OF CHARACTERS, WORDS, AND LINES"

GREP "SELECTS LINES CONTAINING SPECIFIED STRING"
HI "DE?'ONSTRATES A FRIENDLY SYSTEM"
PCD "ALLOWS USER TO CREATE NEW PCDS"
UDUMP "DISPLAYS A PCD AT THE CONSOLE"
DINPHIL "DINING PHILOSOPHERS CONFIGURATION"
SIMTEST "SIMULAT ION CONFIGURATION"

ENTERIING THE NAME OF ANY COMMAND OF CONFIGURATION

WILL DISPLAY ITS CALLING FORMAT.

TYPE $HELP FOR FAST COMMANDS HELP

_l

69

->$ALLOCD /KNIMJEWDR
SYS2 :U0000055./P
ZERO PAGES IN DIRlECTORY: /.JI~i/NEWDR

WORKING DIIRECTORY: /KIM/NJEWDR
->ADD_FD
TRY AGAIN: $ADD-YD PATHNAILE 'MT_EfDf
-)$ADD-3D NEWFILE 'NEWFILE.PAS'

ENTRIES IN DIRECTORY /KIM/NEWDR
SYS2:UOOOOO 1C.DIR/P

NEWjFILE SYS2:NEWFILE. PAS/P

->$ATTR NEWFILE

FILE SYS2:1NEWFILE.PAS/P HAS 0 RECORDS OF LENIGTH 512
->HI && HI

* ** ** ~* ~HELLO YOURSELF *~i

* ** i I,* ~ HELLO YOURSELF *i wr

NADEX PROTOTYPE LINKER ROO-00
WORKING DIRECTORY: /KIM/NEWiDR
MIRACLE PROTOTYPE COMMAND PROCESSC'll ROO-00
->.IF TflUE .ELSE $LS .FI
MISSING .THEN
->. IF FALSE
->$LS .THEN $PWD .ELSE $CWD /HELP .FI
ENTRIES IN DIRECTORY /KIM/NEWDR

SYS2:UOOOOO1C.DIR/P
NEWFILE 3YS2 :NEWFILE. PAS!?

/KIM/NEWDR

->CWD ^IMG
WORKING DIRECTORY: /KIM/IM
- > $PWD

/K IX! MG
->$PWD;
/KITM/IMG

SEQUENCING OPERAND ERROR
->$ALLOC 1

TRY AGAIN: $ALLOC PATHNAME

EN4TRI-ES IN DIRECTORY /KIM/IMG
SYS2:U0OOOO1C.DIR/P

GREP SYS2 :GREP. 1MG/P
wC SYS2:WC.IMG/P
DUMP SYS2 :DCDF. 1MG/P
PErIT SYS2:PEDIT.I1MG/P
MASTER SYS2 :MASTER. 1MG/P
JOBI TEST SYS2 :JOB1 TEST. 1MG/P
JOB2TEST SYS2 :JOB2TEST. 1MG/P

70

->$ALLOC /NIM/Il1G/ALLOCFILE
SYS2:UOOOOO 56./P
->$ATTR ALLOCFILE

FILE SYS2:UOCOOO56.DA"/'P HAS 0 RECORDS OF LENGTH 512
->$DELETE ALLOCFILE
->$ATTR ALLOCFILE
FILE NOT FOUND

PATHNArE ERROR: ALLCCFILE
- >wc

ERROR IN PORT CONNECTIONS:
WC.IN, WC.OUT

->WC <FILE >CUTFILE

MISSING PORT NAME

ERROR IN PORT CONNECTIONS:
WC.IN, WC.OUT

->.IF TRUE .THEN $PWD .FI

/KIM/IMG
->$EDIT $SIMsCEN
SIMMON MASTER<>*1 SCENE1<>*'2 SCENE20*3 !j SCENARIO MASTER SIl1fMON<>*l
I SCENARIO JOBITEST SIMMON(>*2 !! SCENARIO JOB2TEST SIMMON<>*3

->$EDIT $IFPARM

FILE NAMiE ERROR: SYS2:IFPARM.STR/P
->$EDIT $IFPWD
.IF $PWD .THEN $PWD .Fl

->$IFPWD
/KIM/IMG
/KIM/ 1MG

->)$FN4

ENTRIES IN DIPZCTORY /KI14/IMG
SYS2:U0CCOC1lC.DIR/P

GREP SYS2 :GREP. 1MG/P
WC SYS2:WC.IMG/P
DUMP SYS2 :DCDF. 1MG/P
PEDIT SYS2 : PEDIT. V,!G/ P
MASTER SYS2 :MASTER. 1MG/?
JOBlTEST SYS2:JCB!TEST.IMG/P
JOB2TEST SYS2 :JOB2TEST. 1MG/P

71

->.IF $NOT (6A:TT PAS32) .THEN $PWD .ELSE $LS .FI
FILE 'TOT FOUNWD

PATHNAME ERROR:' PAS32
/ KIM/ 1MG

->.IF TRUE .THEN .IF $PWD .THEN $LS .ELSE $CWD /'KlIM/PCD .FI .FI
/KIM/ MG
ENTRIES IN DIRECTORY /KIM/IMG

- SYS2:UOOOOO1C.DIR/P
GREP SYS2 :GREP.I1MG/P
WC SYS2:WC.IMG/P
DUMP SYS2:DCDF.I1MG/P
PEDIT SYS2: PEDIT. 1MG/P
MASTER SYS2 :MASTER. I::oGP
JOBi TEST SYS2:JOBi TEST. 1MG/P
JOB2TEST SYS2 :JOB2TEST. 1MG/P

->$SIGNOFF

REFERENCES

1. Balzer, R. M. Ports--A method for dynamic interprogram

communication and job control. Proc. AFIPS Spring Joint

Computer Conference 38 (1971), 485-489.

2. Bourne, S. R. The UNIX shell. The BlI §eMJ ni journal

57, 6, Part 2 (July-August 1978), 1971-1990.

3. Brinch Hansen, Per. The Architecture oL Concurrent P . rms.

Prentice Hall, Englewood Cliffs, New Jersey, 1977.

4. Fukndis, R. M., and Wallentine, Virgil. INADEX command processors

implementation, Technical Report TR-80-03, Department of

Computer Science, Kansas State University, Manhattan, Ks., July

1980.

5. Gray, T. E. Network job control: the tower of Babel revisited.

Doctoral Dissertation, UCLA, March 1979.

6. Hoare, C. A. R. Communicating sequential processes.

Cnommnications QLite .A 21, 8 (August 1978), 666-677.

7. Jones, Anita K., et. al. StarOS, a multiprocessor operating

system for the support of task forces. Proceedings of the

Seventh Symposium on Operating System Principles, ACM SIGOPS

(December 1979), 117-127.

8. Ousterhout, John K., et. al. Medusa: an experiment in distributed

operating system structure, Communications tL W A=, 23, 2,

(February 1980), 92-104.

9. Rochat, Kim. A software structuring tool for message-based

systems. M.S. Thesis, Dept. of Computer Science, Kansas State

University, Manhattan, Ks., 1980.

72

73

10. Rochat, Kim, and Wallentine, Virgil. IADEX job control system
implementation, Technical Report TR-80-05, Department of
Computer Science, Kansas State University, Manhattan, Ks., May
1980.

11. Young, Robert, and Wallentine, Virgil. The NADEX core operating
system services, Technical Report TR-79-11, Department of
Computer Science, Kansas State University, Manhattan, Ks.,
November 1979.

:i.

DI I

